
Cray XT4: An Early Evaluation for Petascale Scientific
Simulation

Sadaf R. Alam
Oak Ridge National Laboratory

Oak Ridge, Tennessee
alamsr@ornl.gov

Jeffery A. Kuehn
‡

Oak Ridge National Laboratory
Oak Ridge, Tennessee

kuehn@ornl.gov

Richard F. Barrett
Oak Ridge National Laboratory

Oak Ridge, Tennessee
rbarrett@ornl.gov

Jeff M. Larkin
Cray Inc

Seattle, Washington
larkin@cray.com

Patrick H. Worley
Oak Ridge National Laboratory

Oak Ridge, Tennessee
worleyph@ornl.gov

Mark R. Fahey
Oak Ridge National Laboratory

Oak Ridge, Tennessee
faheymr@ornl.gov

Ramanan Sankaran
Oak Ridge National Laboratory

Oak Ridge, Tennessee
sankaranr@ornl.gov

ABSTRACT

The scientific simulation capabilities of next generation high-end
computing technology will depend on striking a balance among
memory, processor, I/O, and local and global network
performance across the breadth of the scientific simulation space.
The Cray XT4 combines commodity AMD dual core Opteron
processor technology with the second generation of Cray’s custom
communication accelerator in a system design whose balance is
claimed to be driven by the demands of scientific simulation. This
paper presents an evaluation of the Cray XT4 using micro-
benchmarks to develop a controlled understanding of individual
system components, providing the context for analyzing and
comprehending the performance of several petascale-ready
applications. Results gathered from several strategic application
domains are compared with observations on the previous
generation Cray XT3 and other high-end computing systems,
demonstrating performance improvements across a wide variety of
application benchmark problems.

Categories and Subject Descriptors

C.4 [Performance of Systems] Measurement techniques &

Performance attributes. C.5.1 [Large and Medium (“Mainframe”)
Computers] Supercomputers.

General Terms

Measurement, Performance.

Keywords

Cray XT4, HPCC, IOR, AORSA, CAM, NAMD, POP, S3D.

1. INTRODUCTION
In our quest to develop the capability for petascale scientific
simulation for both long-term strategic and economic advantage,
we face numerous challenges. The suitability of next generation
high performance computing technology for petascale simulations
will depend on balance among memory, processor, I/O, and local
and global network performance. As we approach technological
“event horizons” in memory latency, processor core performance,
I/O bandwidth, and network latency and bandwidth, achieving
system balance becomes ever more difficult. In this context, we
present an evaluation of the Cray XT4 computer system. We use
micro-benchmarks to develop a controlled understanding of
individual system components, and then use this understanding to
analyze and interpret the performance of several petascale-ready
applications.

2. CRAY XT4 COMPUTER SYSTEM AND

SOFTWARE OVERVIEW
The Cray XT4 is an evolutionary descendant of the Cray XT3 line
of supercomputers, upgrading the processor, memory, and
network technologies and preparing the architecture for additional
on-site technology upgrades. We begin with a description of the
XT3.

Designed in collaboration with Sandia National Laboratory under
the RedStorm project [1][2], the Cray XT3 [3][4][5] has been
called Cray’s third generation of massively parallel processor
(MPP) supercomputers, following the lineage of the Cray T3D
and T3E systems. The machine was designed around the AMD
Opteron processor, a scalable custom interconnect (Cray SeaStar),
and a light-weight kernel (LWK) operating system, Catamount.

The AMD Opteron 100-series processor was selected for the Cray
XT3 system because it provides good floating point performance

©2007 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by a contractor or affiliate
of the [U.S.] Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.

SC07, November 10–16, 2007, Reno, Nevada, USA.
© 2007 ACM 978-1-59593-764-3/07/0011…$5.00.

with high memory bandwidth and low memory latency. A
compelling feature of the AMD Opteron architecture over
competing processors is AMD’s HyperTransport (HT)
specification. HT technology is an open standard for
communicating directly with the CPU, which allows Cray to
connect the Opteron processor directly to the SeaStar network.
AMD also moved the memory controller from a separate
NorthBridge chip to the CPU die, which reduces both complexity
and latency. By choosing the 100-series (single CPU) parts rather
than the 200- (dual CPU SMP) or 800- (quad CPU SMP) series
parts, Cray was able to further reduce the memory latency to less
than 60ns by removing the added latency of memory coherency.
[5][6]

The Cray SeaStar interconnect is a custom, 3D toroidal network
designed to provide very high bandwidth and reliability. The
SeaStar NIC has a PowerPC 440 processor with a DMA engine
onboard to reduce the network load on the Opteron processor.
Each NIC has six links with a peak bidirectional bandwidth of
7.6GB/s and a sustained bidirectional bandwidth of more than
6GB/s. The network links actually exceed the HT bandwidth with
the Opteron processors, ensuring that one node is not capable of
completely saturating the network bandwidth.

It was deemed critical when designing the Cray XT3 system that
the OS should minimize interruptions to the running applications
(“OS jitter”). Thus, while the XT3 service and login nodes run a
complete Linux-based OS, the compute nodes run a microkernel
OS. This combination of operating systems is called UNICOS/lc
(Linux-Catamount). Catamount was initially developed by Sandia
National Laboratory to support scaling the Cray XT3/RedStorm
system to many thousands of processors. RedStorm’s Catamount
supported just one thread of execution per node and reduced
signal handling to minimize interrupts. Additionally, it took
advantage of the single thread of execution to streamline memory
management. To enable the use of dual-core Opterons, “virtual
node” (VN) support was added. In VN mode, the node’s memory
is divided evenly between the cores. However, the VN mode
design is inherently asymmetric, with only one core handling
system interrupts and NIC access, leading to the potential for
imbalance in per-core performance. In particular, in the current
MPI [7] implementation, one core is responsible for all message
passing, with the other core interrupting it to handle messages on
its behalf. Messages between two cores on the same socket are
handled through a memory copy. The XT nodes can also be run in
“single/serial node” (SN) mode, in which only one core is used
but has full access to all of the node’s memory and the NIC.

Cray XT4 compute blades fit into the same cabinet and connect to
the same underlying Cray SeaStar network as the Cray XT3,
allowing both XT3 and XT4 compute blades to co-exist within
the same system. Three major differences exist between the XT3
and XT4 systems. First, the AMD Socket 939 Revision E Opteron
processors have been replaced with the newer AMD AM2 Socket
Revision F Opteron. This socket change was critical to ensure that
dual-core XT4 systems can be site-upgraded to quad-core
processors, just as the original single-core XT3 could be site-
upgraded to dual core. The AMD Revision F Opteron includes a
new integrated memory controller with support for DDR2 RAM.
The upgrade from DDR to DDR2 memory is the second major
difference between the XT3 and XT4 systems. When the Cray
XT3 migrated from single to dual core, there was no change to

memory bandwidth to match the additional processor core. By
upgrading to DDR2 memory, the effective memory bandwidth to
each processor core improves from 6.4GB/s for DDR-400
memory to 10.6GB/s for DDR2-667 memory and 12.8GB/s for
DDR2-800 memory. Finally, XT4 introduces the SeaStar2
network chip to replace the original SeaStar. The SeaStar and
SeaStar2 networks are link-compatible, meaning that Seastar and
SeaStar2 NICs can co-exist on the same network. The SeaStar2
increases the network injection bandwidth of each node from
2.2GB/s to 4GB/s and increases the sustained network
performance from 4GB/s to 6GB/s. This increased injection
bandwidth corresponds with the increased memory bandwidth of
DDR2 RAM. Our study demonstrates the overall impact of the
combination of these new features on system balance in the XT4.

Cray XT3/XT4 systems use CFS’s Lustre filesystem. Lustre is an
object-based parallel filesystem, where one can think of an object
as an inode in a traditional filesystem. A Lustre filesystem has one
or more Object Storage Servers (OSSes), which handle interfacing
between the client and the physical storage. Each OSS serves one
or more Object Storage Targets (OSTs), where the file objects are
stored to disk. The term “file striping” refers to the number of
OSTs used to store a file. For example, if a file has a stripe count
of four, then it is broken into objects and stored on four OSTs.
The filesystem namespace is served by a Metadata Server (MDS).
All metadata operations, including opens, file creation, etc., are
handled by the MDS. At the time of writing, Lustre supports
having just one MDS, which can cause a bottleneck in metadata
operations at large scales. On the XT3/XT4 the MDS and OSSes
are run on the Service and I/O (SIO) nodes, which run a full
distribution of Linux. Compute-node access to Lustre is provided
in the form of a statically linked library, “liblustre.” Figure 1
below shows the architecture of Lustre on a Cray XT3/XT4
system.

Figure 1. Lustre filesystem architecture

3. EVALUATION SYSTEM

CONFIGURATION
Results cited in this paper were collected on the Cray XT3/XT4 at
the National Center for Computational Sciences (NCCS) sited at
Oak Ridge National Laboratory (ORNL). This system consisted
originally of 56 XT3 cabinets with 5,212 2.4GHz, single-core
Opteron processors and 2GB DDR-400 RAM per node. In 2006,
the system was upgraded to 2.6GHz, dual-core Opteron

processors, and the memory was doubled to maintain the
2GB/core level. During Winter 2006/2007, an additional 68 XT4
cabinets were installed, containing 6,296 dual-core Revision F
Opteron processors with 2GB/core of DDR2-667 RAM. At the
time of writing, the XT3 and XT4 cabinets have been combined
into one machine. Experiments on this combined system can be
run using only XT3 or only XT4 nodes, and our evaluation is
ongoing. As part of this evaluation, XT4 performance is compared
both with the original XT3 system using single-core 2.4GHz
Opteron processors and with the dual-core XT3 system when
results are available. System details are summarized in Table 1.
Other systems used for comparison include the IBM SP and IBM
p575 clusters at the National Energy Research Scientific
Computing Center (NERSC) sited at Lawrence Berkeley National
Laboratory, the IBM p690 cluster at ORNL, the Cray X1E at the
NCCS, and the Japanese Earth Simulator.

Table 1. Comparison of XT3, XT3 dual core, and XT4 systems

at ORNL

Cray provides three compiler options on its XT4 supercomputers:
the Portland Group compiler, the GNU Compiler Collection, and
the PathScale compiler. Unless otherwise noted, results in this
paper were obtained using the Portland Group v6.2 compilers
with Message Passing ToolKit (MPT) v1.5 and scientific/math
library functionality provided by Cray’s “libsci” library (which
includes Cray FFT, LAPACK, and ScaLAPACK interfaces) and
the AMD Core Math Library (ACML).

The Lustre filesystem configuration went through three iterations
during the course of our evaluation, as summarized in Table 2.
The first configuration had a total of 96 OSTs over 48 OSSes.
These were configured over 12 DDN-85001 controllers (also
known as couplets) for eight OSTs per couplet connected to the

1
 DDN stands for Data Direct Networks.

storage back-end over 2Gb/s fibre channel. The theoretical peak
performance of this filesystem was 2GB/s * 12 couplets = 24GB/s.
Testing showed a practical peak performance closer to 16GB/s.
During a short testing period, the filesystem was configured to
160 OSTs over 80 OSS nodes connected to DDN-9550 disk
controllers. This filesystem was reconfigured into the final
incarnation, 144 OSTs over 72 OSSes connected to DDN-9550s
via two 4Gb/s fibre channel cards per OSS. The disk controllers
are configured with two “Tiers” per logical unit number (LUN),
where a “Tier” is a DDN term for a 9 disk, 8+1 RAID array. The
theoretical peak of the filesystem is 144*4Gb/s = 144*0.5GB/s =
72GB/s. Based on experiments with the 96 OST Lustre filesystem
[8], we expect the practical (achievable) peak bandwidth to be
closer to two thirds of this number, or 48GB/s. It should be noted
that Lustre I/O performance is a function of the filesystem
configuration and not of the system architecture. Differences in
performance between the filesystem configurations listed are due
to the change in disk controllers, fibre channel links, and the
number of disks available, not due to inherent differences between
the Cray XT3 and XT4.

Table 2. Lustre Filesystem Configurations

 Config. 1 Config. 2 Config. 3

Disk
Contollers

12 DDN-8500
couplets

20 DDN-9550
Couplets

18 DDN-9550
Couplets

OSSes 48 80 72

OSTs 96 160 144

Theoretical
Peak

24GB/s 80GB/s 72GB/s

Practical
Peak

16GB/s 52GB/s 48GB/s

4. METHODOLOGY
Our system evaluation approach recognizes that application
performance is the ultimate measure of system capability, but that
understanding an application’s interaction with a system requires
a detailed map of the performance of the system components.
Thus, we begin with micro-benchmarks that measure processor,
memory subsystem, network, and I/O capabilities of the system at
a low level. We then use the insights gained from the micro-
benchmarks to guide and interpret the performance analysis of
several key applications.

5. MICRO-BENCHMARKS

5.1 High Performance Computing Challenge

Benchmark Suite
The High Performance Computing Challenge (HPCC) benchmark
suite [9][10][11][12] is composed of benchmarks measuring
network performance, node-local performance, and global
performance. Network performance is characterized by measuring
the network latency and bandwidth for three communication
patterns: naturally ordered ring, which represents an idealized
analogue to nearest neighbor communication; randomly ordered

ring, which represents non-local communication patterns; and
point-to-point or ping-pong patterns, which exhibit low

 XT3 XT3 Dual-
Core

XT4

Processor 2.4GHz
single-core

Opteron

2.6GHz
dual-core
Opteron

2.6GHz
dual-core
Opteron

Processor
Sockets

5,212 5,212 6,296

Processor
Cores

5,212 10,424 12,592

Memory DDR-400 DDR-400 DDR2-667

Memory
Capacity

2GB/core 2GB/core 2GB/core

Memory
Bandwidth

6.4GB/s 6.4GB/s 10.6GB/s

Interconnect Cray
SeaStar

Cray
SeaStar

Cray
SeaStar2

Network
Injection

Bandwidth

2.2GB/s 2.2GB/s 4GB/s

contention. The node local and global performance are
characterized by considering four algorithm sets, which represent
four combinations of minimal and maximal spatial and temporal
locality: DGEMM/HPL for high temporal and spatial locality,
FFT for high temporal and low spatial locality, Stream/Transpose
(PTRANS) for low temporal and high spatial locality, and
RandomAccess (RA) for low temporal and spatial locality. The
performance of these four algorithm sets are measured in
single/serial process mode (SP) in which only one processor is
used, embarrassingly parallel mode (EP) in which all of the
processors repeat the same computation in parallel without
communicating, and global mode in which each processor
provides a unique contribution to the overall computation
requiring communication. XT4 results are compared to the
original XT3 based on the 2.4GHz single core Opteron.

5.1.1 Network latency and bandwidth
Figure 2 shows that XT4 delivers roughly 4.5µs best case network
latency in SN mode, an improvement over the single-core XT3’s
order of 6µs latency. However, in VN mode access to the NIC can
become a bottleneck, resulting in significantly higher network

0

2

4

6

8

10

12

14

16

18

20

PPmin PPavg PPmax Nat.Ring Rand.Ring

N
e

tw
o

rk
 L

a
te

n
c

y
 (

m
ic

ro
s

e
c

o
n

d
s
) XT3

XT4-SN

XT4-VN

Figure 2. Network latency

0

0.5

1

1.5

2

2.5

PPmin PPavg PPmax Nat.Ring Rand.Ring

N
e
tw

o
rk

 B
a
n

d
w

id
th

 (
G

B
/s

)

XT3

XT4-SN

XT4-VN

Figure 3. Network bandwidth

latencies – approaching 18µs worst case network latency for
larger configurations, though this can be expected to improve as
the XT4 software stack matures. Figure 3 shows the XT4’s ping-
pong bandwidth has increased to just over 2GB/s vs. the XT3’s
1.15GB/s – a result of nearly doubling the injection bandwidth
due to SeaStar2’s improved handling of the HyperTransport link
to the Opteron processor. Comparing XT4 SN mode to XT3
across a broad range of problem sizes, the natural and random
ring bandwidth has improved. In VN mode, XT4 also improves

the natural and random ring bandwidth per socket relative to the

XT3; however, the per core bandwidth in VN mode is slightly

worse than the XT3.

5.1.2 Compute node performance
Comparing FFT results between XT3 and XT4-SN (Figure 4), we
see the impact of a faster core (2.4GHz vs. 2.6GHz) and faster
memory parts (DDR-400 vs. DDR2-667), which collectively
account for a 25% performance improvement, largely attributable
to the memory improvement. In the case of DGEMM, we observe
that the XT4’s 2.6GHz cores deliver a small clock frequency

driven improvement over the XT3’s 2.4GHz cores (Figure 5).
Furthermore, we note that high-temporal-locality memory access

patterns of both FFT and DGEMM suffer little degradation in the
per-core performance when both cores are active, and are thus
relatively immune to the potential performance impacts of sharing
one memory controller between two cores. The RA benchmark
(Figure 6) demonstrates that multi-core is not a universal answer
to processor performance requirements. The XT4 SP mode RA
results demonstrate improvement over XT3 due to a slightly faster
processor and faster memory clock speed. However, in EP mode
we see that the per-core RA performance is half of the SP value –
falling behind the per-core XT3 result due to an essentially
unscaled memory subsystem, resulting in the same per-socket RA
performance regardless of whether one or both cores are active.
The Stream results (Figure 7) are similar in that the faster memory
parts and faster processor improve the per-socket performance
over XT3, but that utilizing the second core offers little
improvement over just one core for problems with high spatial
locality but low temporal locality.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

XT3 XT4-SN XT4-VN

F
F

T
 (

G
F

L
O

P
S

)

SP

EP

Figure 4. SP/EP Fast Fourier Transform (FFT)

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

XT3 XT4-SN XT4-VN

D
G

E
M

M
 (

G
F

L
O

P
S

)

SP

EP

Figure 5. SP/EP Matrix Multiply (DGEMM)

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

XT3 XT4-SN XT4-VN

R
a

n
d

o
m

A
c

c
e

s
s

 (
G

U
P

S
)

SP

EP

Figure 6. SP/EP Random Access (RA)

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

XT3 XT4-SN XT4-VN

S
tr

e
a

m
 T

ri
a

d
 (

G
B

/s
)

SP

EP

Figure 7. SP/EP Memory Bandwidth (Streams)

5.1.3 Global benchmarks
Like DGEMM, HPL demonstrates the promise of multi-core
(Figure 8). On a per-core basis, the XT4 demonstrates nearly

clock-frequency-proportional speed-up over XT3 in both SN and

VN modes. Moreover, on a per-socket basis, XT4 shows

significant improvement over XT3. Based on the SP/EP FFT
results, one might expect MPI-FFT to behave similarly to
DGEMM and HPL; however, the results (Figure 9) are somewhat

different. MPI-FFT on XT4 is faster than XT3 on a per-socket

basis for either SN or VN mode, but on a per-core basis, VN

mode performs much worse. This can be attributed to the NIC
bottleneck which results from the current NIC sharing
arrangement in VN mode. Again, we expect that this will improve
as the XT4 software stack matures, particularly with respect to
more efficient multi-core utilization of the NIC and protocol
offload onto the SeaStar2’s PPC core. As with Streams, the
bandwidth-sensitive PTRANS benchmark (Figure 10) shows that
multi-core is not a panacea. On the contrary, the PTRANS
performance per socket for the XT4 vs. XT3 is essentially
unchanged, falling within typical variances for PTRANS due to
job layout topology. This is a function of the SeaStar-to-SeaStar
interconnection link bandwidth which did not change from XT3
to XT4. Furthermore, the depiction of the per-core VN mode
results demonstrate that network injection bandwidth
improvements had little effect in the case of PTRANS. Like
Streams, algorithms dominated by spatial locality see little
improvement, if any, over the XT3. Finally, the MPI-RA
benchmark (Figure 11) demonstrates the negative impact of

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0 200 400 600 800 1000 1200

Cores/Sockets

H
P

L
 (

T
F

L
O

P
S

)

XT3 (5/06)

XT4-SN (2/07)

XT4-VN (cores)

XT4-VN (sockets)

Figure 8. Global High Performance LINPACK (HPL)

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200

Cores/Sockets

M
P

I-
F

F
T

 (
G

F
L

O
P

S
)

XT3 (5/06)

XT4-SN (2/07)

XT4-VN (cores)

XT4-VN (sockets)

Figure 9. Global Fast Fourier Transform (MPI-FFT)

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000 1200
Cores/Sockets

P
T

R
A

N
S

 (
G

B
/s

)

XT3 (5/06)

XT4-SN (2/07)

XT4-VN (cores)

XT4-VN (sockets)

Figure 10. Global Matrix Transpose (PTRANS)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 200 400 600 800 1000 1200

Cores/Sockets

M
P

I
R

a
n

d
o

m
A

c
c
e
s
s
 (

G
U

P
S

)

XT3 (5/06)

XT4-SN (2/07)

XT4-VN (cores)

XT4-VN (sockets)

Figure 11. Global Random Access (MPI-RA)

multiple cores – here XT4’s SN mode shows a slight
improvement over XT3 due to a convergence of three factors:
core frequency, memory bandwidth/latency, and network injection

bandwidth/latency. In contrast, VN mode XT4 is slower both per-

core and per-socket than XT3 (and SN mode XT4) due to the

increased network latency of VN mode that overwhelms all other
factors, resulting in overall poorer performance. Latency
improvements to the VN mode NIC sharing will directly impact
this result.

5.2 Bidirectional Latency and Bandwidth
To provide additional detail on MPI communication performance,
data from two additional experiments were collected. The first
experiment measures the bidirectional bandwidth for a single pair
of MPI tasks when the two tasks are assigned to cores in different
compute nodes (“0-1 internode”). The second experiment
measures the worst case bidirectional bandwidth for two pairs of
MPI tasks when two tasks in one node are exchanging data with
two tasks in a different node simultaneously (“i-(i+2), i=0,1
(VN)”). Figure 12 and Figure 13 are plots of the MPI

Figure 12. Bidirectional MPI bandwidth

Figure 13. Bidirectional MPI bandwidth

bidirectional bandwidth as a function of message size, where
Figure 12 uses a log-log scale to emphasize the performance for
small message sizes and Figure 13 uses a log-linear scale to
emphasize the performance for large message sizes. From these
data, the dual-core XT4 bidirectional bandwidth is at least 1.8
times that of the dual-core XT3 for message sizes over 100,000
Bytes. For large messages, the two-pair experiments achieve
exactly half the per pair bidirectional bandwidth as the single-pair
experiments, representing identical compute node bandwidths.
Bandwidth for the single-core XT3 lags that of the dual-core XT3
for all but the largest messages, but it achieves the same peak
performance. For small message sizes, dual-core XT3
performance and dual-core XT4 performance are identical.
However, latency for the two-pair experiments on the dual-core
systems is over twice that of the single-pair experiments. This
sensitivity of MPI latency to simultaneous communication by both
cores will be evident in some of the application benchmark
results. Finally, single-core XT3 latency is much worse than that
on the dual-core systems. However, data for the single-core
experiments were collected more than two years ago, and the
performance differences are likely to be, at least partly, due to
changes in the system software.

5.3 I/O Benchmark Suite
This section contains I/O performance data for both serial and
parallel tests using three different benchmark codes. I/O
performance is studied independently of applications because
there is no standard method to do I/O across codes or even within
a code. In fact, application benchmarks with I/O turned on can
often over emphasize the I/O requirements. Instead, here we
attempt to understand some basic characteristics of the XT4
filesystem with relatively simple benchmarks. For all tests, the
Lustre filesystem stripe sizes and stripe counts were set using the
“lfs setstripe” command prior to running the benchmarks.

5.3.1 CustomIO1
Figure 14-Figure 22 contain data generated by a custom code,

CustomIO1 [13]. This code is a very simple, buffered, single-file

MPI-I/O write benchmark that was designed to model the I/O
pattern of a climate application. More specifically, the benchmark
models the behavior of exporting a large amount of data from
memory to disk efficiently, as would be done in checkpointing.
The original version of the benchmark assigned a subset of the
available tasks to act as writers and opened an MPI file over that
subset of writers, but it was determined that the communication
portion of this test was negligible. The benchmark version we
used opens a file across all tasks, but in task counts comparable to
the expected number of writers for large program runs. Each
writer in the benchmark uses the mpi_write_at method to write
data to an offset in the shared file. These results were generated
on a Cray XT4, using luster-ss/1.5.31, configured with 160 OSTs.

First, the I/O performance when using one task was studied. Since
this is a fairly common practice in parallel applications, it is
worthwhile to investigate the performance. Figure 14 and Figure
15 show the effect of buffer size on performance. Figure 14 has a
single stripe, but varies buffer sizes and stripe sizes. Here, the
maximum performance is 300MB/s. Figure 15 has the striping
count fixed at 160, but varies stripe size and the I/O buffer on the
x- and y-axes. Varying the I/O buffer size produces the most

1
0
K

1
M 3

0
M

6
4
K

1
9
2
K

6
4
0
K

1
9
2
0
K

6
.4

M

1
9
.2

M

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

b
a
n

d
w

id
th

buffer

size
stripe size

Figure 14. CustomIO1, 1 node, 1 stripe

6
4
K

1
9
2
K

6
4
0
K

1
9
2
0
K

6
.4

M

1
9
.2

M

10K

1M

30M
0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

b
a
n
d
w

id
th

stripe size

buffer

size

Figure 15. CustomIO1, 1 node, 160 stripes

6
4
K

1
9
2
K

6
4
0
K

1
9
2
0
K

6
.4

M

1
9
.2

M

1

50

1500.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

b
a
n

d
w

id
th

stripe size

stripes

Figure 16. CustomIO1, 1 node, 10MB buffer

6
4

K

1
9

2
K

6
4
0

K

1
9

2
0
K

6
.4

M

1
9

.2
M

1

50

150

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

7.E+09

8.E+09

9.E+09

1.E+10

b
a

n
d

w
id

th

stripe size

stripes

Figure 17. CustomIO1, 50 writers, 1M buffer

6
4
K

1
9
2
K

6
4
0
K

1
9
2
0
K

6
.4

M

1
9
.2

M

1

50

150

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

7.E+09

8.E+09

9.E+09

1.E+10
b
a
n
d
w

id
th

stripe size

stripes

Figure 18. CustomIO1, 50 writers, 10M buffer

6
4
K

1
9
2
K

6
4
0
K

1
9
2
0
K

6
.4

M

1
9
.2

M

1

50

150

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

7.E+09

8.E+09

9.E+09

1.E+10

b
a
n

d
w

id
th

stripe size

stripes

Figure 19. CustomIO1, 50 writers, 100M buffer

6
4
K

1
9
2
K

6
4
0
K

1
9
2
0
K

6
.4

M

1
9
.2

M

10K

1M

30M

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

7.E+09

8.E+09

9.E+09

1.E+10

b
a
n

d
w

id
th

stripe size

stripes

Figure 20. CustomIO1, 20 writers, 150 stripes

6
4
K

1
9
2
K

6
4
0
K

1
9
2
0
K

6
.4

M

1
9
.2

M

10K

10M
0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

7.E+09

8.E+09

9.E+09

1.E+10

b
a
n

d
w

id
th

stripe size

stripes

Figure 21. CustomIO1, 50 writers, 150 stripes

6
4
K

1
9
2
K

6
4
0
K

1
9
2
0
K

6
.4

M

1
9
.2

M

10K

1M

30M

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

7.E+09

8.E+09

9.E+09

1.E+10

b
a
n

d
w

id
th

stripe size

stripes

Figure 22. CustomIO1, 100 writers, 150 stripes

pronounced effect, and at the maximum buffer size, the bandwidth
is observed to be 600MB/s. Figure 16 shows performance as the
number of stripes, and the stripe sizes change when writing out a
constant 10MB buffer. Performance reached a maximum of
around 500MB/s. The bandwidth quickly climbs from
approximately 300MB/s with a stripe count of one to 500MB/s
with a stripe count around 20 and stays there up to a stripe count
of 150. For a constant 100MB buffer (data not shown), the
maximum crests around 600MB/s. Together, these numbers
indicate that when using one I/O task, a code cannot take
advantage of a large Lustre filesystem, as would be expected.
Furthermore, stripe counts greater than one have a positive effect,
but only up to a relatively small amount, around 10-20%. On the
other hand, stripe size is essentially irrelevant in this scenario,
except when the stripe size is set too large.

The effect of buffer size, stripe size, and stripe count in parallel
I/O scenarios were investigated again using the CustomIO1
micro-benchmark. Figure 17-Figure 19 show bandwidth rates
when using 50 writers, but varying the aforementioned
dimensions. Again, larger I/O buffers result in better performance
and increasing the stripe count improves performance for large
writes. Figure 20-Figure 22 show data for a fixed stripe count of
150, varying the number of writes, the stripe size, and the buffer
sizes to demonstrate the importance of buffer size, and also the
importance of “having enough writers.” The results indicate that
reasonable I/O rates may be achieved through the obvious
approaches of using a buffer size of at least 1-10MB and striping
across a large portion of the available OSTs, but also less
obviously that a sufficient number of I/O nodes must be used to
sustain high performance.

5.3.2 IOR
The IOR Benchmark [14] tests were run in a non-dedicated mode,

and all were performed using the MPI I/O mode (rather than
POSIX or HDF5 modes) with luster-ss/1.5.31 and 144 OSTs.
Figure 23-Figure 26 show “scaling” results from IOR – that is,
I/O bandwidth rates from IOR as the number of tasks
(writers/readers) increases on the x-axis. Figure 23 and Figure 24
show the I/O performance as the size per task was kept constant
and the number of tasks increased. In particular, Figure 23 shows
the results for one file per task, while Figure 24 shows the
performance for a single-shared file. The maximum bandwidth
rates achieved were 42GB/s and 34GB/s for one file per task and
one single-shared file, respectively, which are shy of the
theoretical 72GB/s peak. Figure 25 and Figure 26 show the
bandwidth rates as the aggregate IO size is kept constant at 64GB
for one file per task and a single-shared file, respectively. The
maximum achieved rates are very similar to those above at
40GB/s and 37GB/s for one file per task and a single-shared file,
respectively. As before, the maximum performance was achieved
with the number of tasks in the range of 500 to 2000. Based on
these data, it seems clear that using a subset of the application
tasks for I/O will result in better overall I/O performance at scale.
We do not know why the performance eventually decreases down
to an asymptotic level – the same for both read and write. It would
certainly be of interest to know why, and if possible, keep the
performance at its maximum level so users of the XT systems
would not have to do anything special to avoid the performance
degradation, or modify their codes to work around the issue as
done in the next section. The performance when doing I/O to a

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000 12000

Clients

B
a
n
d
w

id
th

 (
G

B
/s

)

2MB Write

8MB Write

32MB Write

2MB Read

8MB Read

32MB Read

Figure 23. IOR, file per core MPI-IO, XT4-VN

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000
Clients

B
a
n
d
w

id
th

 (
G

B
/s

)

2MB Write

8MB Write

32MB Write

2MB Read

8MB Read

32MB Read

Figure 24. IOR, shared file MPI-IO, XT4-VN, 143 stripes

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000

Clients

B
a
n
d
w

id
th

 (
G

B
/s

)

Write

Read

Figure 25. IOR, file per task MPI-IO, XT4-VN,

constant total IO of 64GB

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000

Clients

B
a
n
d
w

id
th

 (
G

B
/s

)

Write

Read

Figure 26. IOR, shared file MPI-IO, XT4-VN,

constant total IO of 64GB

shared file and to a file per task are somewhat qualitatively
different, but the difference is not large enough that it should
change how users run on a Lustre filesystem.

5.3.3 CustomIO2
Based on the results above, we investigated the idea of using a
subset of MPI tasks to do the I/O for an entire application. This
was another custom Fortran code, CustomIO2 [15] designed to
write out contiguous buffers by each process either to a single-
shared file or, alternatively, to a file per process. Furthermore, this
code was designed to take in runtime parameters to define a
subset of processes with which to do I/O, and, in addition, to use
one of several methods of moving the data to the subset of
processes to do the I/O (the author was not aware of this
functionality being available in any standard I/O package). The
intent (as with CustomIO1) was to model the behavior of writing
a large amount of data to disk, as in a checkpoint. Although there
are only a few results to date, they do confirm our theory.

This first test was run on an XT3 system with a 96 OST Lustre
filesystem running luster-ss/1.5.29 – this filesystem no longer
exists. Tests were performed with 8,640 cores (on a dual-core
machine) where each task had a 5MB buffer to write out. When
all tasks wrote to their own file, the effective bandwidth was
1.4GB/s. Reads were 2.0GB/s. Then, a subset of 960 tasks out of
the 8,640 tasks was used to do I/O (all the buffer data was
aggregated onto the I/O tasks before writing). In this case, the
effective write bandwidth was 10.1GB/s and the read bandwidth
was 10.3GB/s.

The second test was run on an XT4 system with 144 OSTs
running luster-ss/1.5.31. The tasks had an 8MB buffer. The test
was to compare 9,216 tasks writing out 8MB each versus 1,024
tasks writing out the aggregated data from nine tasks. With all
9,216 tasks writing, the bandwidth was 0.6GB/s, but using a 1,024
task subset for I/O achieved 10.4GB/s – a 17x improvement.
These tests provide early evidence that using a subset of tasks for
I/O produces significantly better performance than when using all
the available cores.

6. APPLICATION BENCHMARKS
The following application benchmarks are drawn from the current
NCCS workload. These codes are large with complex
performance characteristics and numerous production
configurations that cannot be captured or characterized adequately
in the current study. The intent is, rather, to provide a qualitative
view of system performance using these benchmarks. In
particular, despite the importance, I/O performance is explicitly
ignored in these application benchmarks for the practical reason
that I/O would be overemphasized in the relatively short, but
numerous, benchmark runs that we employed in this study.

6.1 Atmospheric Modeling
The Community Atmosphere Model (CAM) is a global
atmosphere circulation model developed at the National Science
Foundation’s National Center for Atmospheric Research (NCAR)
with contributions from researchers funded by the Department of
Energy (DOE) and by the National Aeronautics and Space
Administration [16][17]. CAM is used in both weather and
climate research. In particular, CAM serves as the atmosphere

component of the Community Climate System Model (CCSM)
[18][19].

For this evaluation, we ported and optimized CAM version 3.1
(available for download from the CCSM website at
http://www.ccsm.ucar.edu/) as described in [20]. CAM is a
mixed-mode parallel application code using both MPI and
OpenMP protocols [21]. CAM’s performance is characterized by
two phases: “dynamics” and “physics.” The dynamics phase
advances the evolution equations for the atmospheric flow, while
the physics phase approximates subgrid phenomena, including
precipitation processes, clouds, long- and short-wave radiation,
and turbulent mixing [16]. Control moves between the dynamics
and the physics at least once during each model simulation
timestep. The number and order of these transitions depend on the
configuration of numerical algorithm for the dynamics.

CAM implements three dynamical cores (dycores), one of which

is selected at compile-time: a spectral Eulerian solver [22], a

spectral semi-Lagrangian solver [23], and a finite volume semi-

Lagrangian solver [24]. Our benchmark problem is based on

using the finite volume (FV) dycore over a 361×576 horizontal
computational grid with 26 vertical levels. This resolution is
referred to as the “D-grid,” and while it is greater than that used in
current computational climate experiments, it represents a
resolution of interest for future experiments. The FV dycore
supports both a one-dimensional (1D) latitude decomposition and
a two-dimensional (2D) decomposition of the computational grid.
The 2D decomposition is over latitude and longitude during one
phase of the dynamics and over latitude and the vertical in another
phase, requiring two remaps of the domain decomposition each
timestep. For small processor counts, the 1D decomposition is
faster than the 2D decomposition, but the 1D decomposition must
have at least three latitudes per MPI task and so is limited to a
maximum of 120 MPI tasks for the D-grid benchmark. Using a
2D decomposition requires at least three latitudes and three
vertical layers per MPI task, so is limited to 120×8, or 960, MPI
tasks for the D-grid benchmark. OpenMP can also be used to
exploit multiple processors per MPI task. While OpenMP
parallelism is used on the Earth Simulator and IBM systems for
the results described in Figure 28, it is not used on the Cray
systems.

Figure 27. CAM throughput on XT4 vs. XT3

Figure 27 is a comparison of CAM throughput for the D-grid
benchmark problem on the single-core XT3 and on the dual-core
XT3 and XT4. Comparing throughput between the single-core
XT3 and the dual-core XT3 and XT4 when running in SN mode,
the impact of the improved processor, memory, and network
performance is clear, though software improvements may also
play a role in the performance differences between the single-core
and dual-core XT3 results. Comparing performance between the
dual-core XT3 and XT4 when running in VN mode demonstrates
a similar performance improvement due to the higher memory
performance and network injection bandwidth for the XT4. As
indicated in the micro-benchmarks, contention for memory and
for network access can degrade performance in VN mode as
compared to SN mode, on a per task basis. However, SN mode is
“wasting” as many processor cores as it is using, so the 10%
improvement in throughput compared to VN mode comes at a
significant cost in computer resources. For example, comparing
performance using 504 MPI tasks in SN mode with using 960
MPI tasks in VN mode, thus using approximately the same
number of compute nodes, VN mode achieves approximately 30%
better throughput.

Figure 28. CAM throughput on XT4 relative to

previous results

Figure 28 compares CAM throughput for the D-grid benchmark
problem for the Cray XT4 and for the following systems:

• Cray X1E at ORNL: 1024 Multi-Streaming Processors (MSP),
each capable of 18GFlop/s for 64-bit operations. MSPs are fully
connected within 32-MSP subsets, and are connected via a 2D
torus between subsets.

• Earth Simulator: 640 8-way vector SMP nodes and a 640x640
single-stage crossbar interconnect. Each vector processor is
capable of 8GFlop/s for 64-bit operations.

• IBM p690 cluster at ORNL: 27 32-way p690 SMP nodes and an
HPS interconnect. Each node has two HPS adapters, each with
two ports. Each processor is a 1.3GHz POWER4 and is capable of
5.2GFlop/s for 64-bit operations.

• IBM p575 cluster at NERSC: 122 8-way p575 SMP nodes and
an HPS interconnect with one two-link adapter per node. Each
processor is a 1.9GHz POWER5 and is capable of 7.6GFlop/s for
64-bit operations.

• IBM SP at NERSC: 184 Nighthawk II 16-way SMP nodes and
an SP Switch2. Each node has two interconnect interfaces. Each
processor is a 375MHz POWER3-II and is capable of 1.5GFlop/s
for 64-bit operations.

Each data point in Figure 28 represents the performance on the
given platform for the given processor count after optimizing over
the available virtual processor grids defining the domain
decomposition and after optimizing over the number of OpenMP
threads per MPI task. For the D-grid benchmark, SN and VN
mode XT4 performance brackets that of the IBM p575 cluster.
Note that at 960 processors, vector lengths have fallen below 128
for important computational kernels, limiting performance on the
vector systems.

Figure 29. CAM performance by computational phase

Figure 29 is a plot of the wall clock seconds per simulation day
for the dynamics and for the physics for the XT4, SN and VN
modes, and for the p575 cluster. The dynamics is approximately
twice the cost of the physics for this problem and dycore. The
physics costs for the p575 cluster and the dual-core XT4 are
similar up through 504 processors. The IBM and Cray systems
also have qualitatively similar performance for the dynamics, but
the fact that the IBM uses OpenMP makes it difficult to compare
performance details between the systems. Comparing XT4
performance in SN and VN modes, 70% of the difference in the
physics for high task counts is due to the difference in time
required in the MPI_Alltoallv calls used to load balance the
physics and to communicate with the imbedded land model.
Similarly, much of the performance difference between SN mode
and VN mode performance in the dynamics occurs in the MPI
communication in the remap between the two 2D domain
decompositions. These results agree qualitatively with those from
the micro-benchmarks when comparing MPI performance in SN
and VN modes, with the same expectation that the difference in
performance will decrease as the software stack matures. OpenMP
is also expected to provide a performance enhancement when it
becomes available on the XT4 by allowing fewer MPI tasks to be
used and by allowing us to restrict MPI communication to a single
core per node.

In summary, CAM performs and scales well on the XT4 within
the limits of its domain decomposition. The performance
advantage of SN over VN mode for large MPI task counts is
primarily due to degraded MPI performance when running in VN

mode, as previously observed in the micro-benchmarks. XT4-
specific MPI optimizations are being investigated to ameliorate
this performance loss. OpenMP will also provide a method to
work around this limitation, as well as to improve algorithmic
scalability.

6.2 Ocean Modeling
The Parallel Ocean Program (POP) [25] is a global ocean
circulation model developed and maintained at Los Alamos
National Laboratory. POP is used for high-resolution studies and
as the ocean component in the CCSM. The code is based on a
finite-difference formulation of the three-dimensional (3D) flow
equations on a shifted polar grid. POP performance is
characterized by the performance of a “baroclinic phase” and a
“barotropic phase.” The 3D baroclinic phase scales well on all
platforms due to its limited nearest-neighbor communication. In
contrast, the barotropic phase is dominated by the solution of a
2D, implicit system, whose performance is very sensitive to
network latency and typically scales poorly on all platforms.

For our evaluation, we used version 1.4.3 of POP with a few
additional parallel-algorithm tuning options [26], utilizing
historical performance data based on this version to provide a
context for the current results. The current production version of
POP is version 2.0.1. While version 1.4.3 and version 2.0.1 have
similar performance characteristics, the intent here is to use
version 1.4.3 to evaluate system performance, not to evaluate the
performance of POP.

We consider results for the 1/10-degree benchmark problem,
referred to as “0.1.” The pole of the latitude-longitude grid is
shifted into Greenland to avoid computations near the singular
pole point. The grid resolution is 1/10 degree (10km) around the
equator, increasing to 2.5km near the poles, utilizing a 3600x2400
horizontal grid and 40 vertical levels. This grid resolution resolves
eddies for effective heat transport and is used for ocean-only or
ocean and sea-ice experiments.

Figure 30. POP throughput on XT4 vs. XT3

Figure 30 is a comparison of POP throughput for the 0.1
benchmark problem on the single-core XT3 and on the dual-core
XT3 and XT4. As with CAM, we see a performance advantage to
running on the XT4 compared to the XT3 and to running with SN
mode compared to VN mode (for the same MPI task count).
Unlike CAM, this POP benchmark can use the whole system, and

the advantage in system throughput of using both processor cores
instead of just one is significant. For example, the 5,000 task SN
mode results use the same number of compute nodes as the
10,000 task VN mode results, and using both cores improves
throughput by 40%.

Note that the increase in processor speed when going from the
single-core to dual-core XT3 did not improve performance
measurably. The increase in memory and network performance
had somewhat more impact for this benchmark, but at large MPI
task counts performance is latency sensitive, and MPI latency is
essentially the same on the XT3 and XT4 as indicated by the
micro-benchmarks.

Figure 31. POP throughput on XT4 relative to

previous results

Figure 32. POP performance by computational phase

Figure 31 is a platform comparison of POP throughput for the 0.1
benchmark problem. On the Cray X1E we used a version of POP

that uses a Co-Array Fortran [27] implementation of a

performance-sensitive halo update operation. All other results
were for MPI-only versions of POP. For the XT results, we used
all XT4 compute nodes through 5,000 MPI tasks in SN mode and
10,000 MPI tasks in VN mode, and used a mix of XT3 and XT4
compute nodes for larger MPI task counts. We also include
performance for runs with a version of 1.4.3 in which we have
backported an algorithmic improvement available in version 2.1
of POP. This modified version uses the Chronopoulos-Gear (C-G)

variant of the conjugate-gradient algorithm used to solve the

linear system in the barotropic phase [28]. C-G requires half the

number of calls to MPI_Allreduce (to calculate inner products)
compared to the standard MPI implementation of conjugate
gradient. This latter performance will be more representative of
production POP performance in the future. As shown, decreasing
the number of MPI_Allreduce calls improves POP performance
significantly.

Figure 32 shows the XT performance of both the baroclinic and
the barotropic phases (time per simulation day in seconds) for
both SN and VN modes and for VN mode when using the C-G
algorithm. Note that the barotropic performance is relatively flat
and is the dominant cost for large numbers of MPI tasks. While
SN mode performance is somewhat better than VN mode
performance for a fixed number of tasks for the computation-
bound baroclinic phase, using VN mode for the baroclinic is
much more efficient in terms of compute nodes. The same is not
true for the barotropic phase. To further improve POP
performance on the XT4 will require improving the performance
of the MPI_Allreduce employed in the conjugate-gradient
algorithm used in the barotropic phase or reducing the number of
MPI_Allreduce calls required. C-G takes this latter approach.
More-efficient pre-conditioners, to decrease the number of
iterations required by conjugate gradient to solve the linear
system, are also being examined. It is worth noting that the VN
mode performance of the Cray-supplied MPI_Allreduce improved
significantly recently, eliminating much of the contention between
the processor cores. This optimization is reflected in the data here.
Additional VN optimization is feasible, as there is little reason for
latency-dominated collectives to run significantly slower in VN
mode than in SN mode. The VN mode performance variability in
the barotropic phase apparent in Figure 32 also indicates the
possibility for further performance improvements.

In summary, the 0.1-degree POP benchmark scales very well on
the XT4, achieving excellent performance out to 22,000 MPI
tasks. The performance analysis indicates that performance will
not scale further unless the cost of the conjugate-gradient
algorithm used in the barotropic phase can be further decreased.
Both algorithmic and MPI collective optimizations are currently
being investigated for this purpose.

6.3 Biomolecular Simulations
Nanoscale Molecular Dynamics (NAMD) is a scalable, object-
oriented molecular dynamics (MD) application designed for
simulation of large biomolecular systems [29]. It employs the
prioritized message-driven execution model of the
Charm++/Converse parallel runtime system, in which collections
of C++ objects remotely invoke methods on other objects with
messages, allowing parallel scaling on both MPP supercomputers
and workstation clusters [30].

Biomolecular simulation improves our understanding of novel
biochemical functions and essential life processes. Biomolecular
problems are computationally difficult, engendering high
complexity and time scales spanning more than 15 orders of
magnitude to represent the dynamics and functions of
biomolecules. Biomolecular simulations are based on the
principles of molecular dynamics (MD), which model the time
evolution of a wide variety of complex chemical problems as a set
of interacting particles, simulated by integrating the equations of

motion defined by classical mechanics — most notably Newton’s

second law, ∑F=ma. Several commercial and open source MD

software frameworks are in use by a large community of
biologists, and differ primarily in the form of their potential
functions and force-field parameters.

0.001

0.01

0.1

1

64 128 256 512 1024 2048 4096 8192 12000

MPI Tasks

T
im

e
 (
s
e
c
o
n
d
s
)
p
e
r

N
A

M
D

 S
im

u
la

ti
o
n
 T

im
e
s
te

p

XT3
(1M)

XT4
(1M)

XT3
(3M)

XT4
(3M)

Figure 33. NAMD performance on XT4 vs. XT3

0.001

0.01

0.1

1

64 128 256 512 1024 2048 4096 8192 12000

MPI Tasks

T
im

e
 (

s
e
c
o

n
d

s
)

p
e
r

N
A

M
D

 S
im

u
la

ti
o

n
 T

im
e
s
te

p

1M (SN)

1M (VN)

3M (SN)

3M (VN)

Figure 34. NAMD performance impact of SN vs. VN

We consider two representative petascale biological systems with
approximately one- and three-million atoms respectively. The
simulation performance is measured in time per simulation step,
which should theoretically decrease as processing units are added.
Figure 33 shows comparisons of XT3 and XT4 performance for
both the ~1M and ~3M atom simulations. Using the XT3 and
XT4 systems in VN mode, the 1M atom simulations scale to
8,192 cores and achieve ~9ms/step, while the 3M atom
simulations scale to 12,000 XT4 cores, sustaining ~12ms/step
performance. Note that the Blue Gene/L system with 16K
processing cores reported ~10ms/step for a simulation of

approximately 300K atoms [30]. Unlike the Blue Gene/L runs,

however, no system specific optimization and instrumentation is
applied for the XT3 and XT4 simulation experiments. The scaling
for 1M atom system is restricted by the size of underlying FFT
grid computations. Since the MD simulations are predominantly
compute-intensive, overall the simulation runs on the XT4 system
offer an order of 5% performance gain over the XT3 system.

Figure 34 illustrates the impact of SN and VN execution modes
on NAMD performance on the XT4 system. Again, there is very
little impact, order of 10% or less, attributable to using the second
core. Nevertheless, the increased communication requirements for
simulation runs with a large number of MPI tasks result in
relatively large increases in runtime in the VN mode as compared
to the SN mode.

6.4 Turbulent Combustion
Direct numerical simulation (DNS) of turbulent combustion
provides fundamental insight into the coupling between fluid
dynamics, chemistry, and molecular transport in reacting flows.
S3D is a massively parallel DNS solver developed at Sandia
National Laboratories. S3D solves the full compressible Navier-
Stokes, total energy, species, and mass continuity equations
coupled with detailed chemistry. It is based on a high-order
accurate, non-dissipative numerical scheme and has been used
extensively to investigate fundamental turbulent chemistry
interactions in combustion problems including auto-ignition [31],
premixed flames [32], and non-premixed flames [33].

The governing equations are solved on a conventional 3D
structured Cartesian mesh. The code is parallelized using a 3D
domain decomposition and MPI communication. Spatial
differentiation is achieved through eighth-order finite differences
along with tenth-order filters to damp any spurious oscillations in
the solution. The differentiation and filtering require nine and
eleven point centered stencils, respectively. Ghost zones are
constructed at the task boundaries by non-blocking MPI
communication among nearest neighbors in the 3D
decomposition. Time advance is achieved through a six-stage,
fourth-order explicit Runge-Kutta (R-K) method [34].

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000

Number of cores

C
o

s
t

p
e

r
g

ri
d

 p
o

in
t

p
e

r
ti

m
e

 s
te

p
 (

in

m
ic

ro
s

e
c

o
n

d
)

XT3

XT4

Figure 35. S3D parallel performance

S3D’s key performance metric is computation time (in core hours)
required per grid point per time-step for a given architecture and
processor count. A lower simulation time will allow an increased
grid size and/or a larger number of time steps, both of which
allow the simulation of higher Reynolds number regimes, more
complete temporal development of the solution, and larger
statistical sample sets for greater accuracy and confidence. Figure
35 shows the execution time and parallel performance of S3D
obtained from a weak scaling test using 503 grid points per MPI

task. In VN mode, S3D shows good performance even at very
high processor counts. This is because the algorithm requires
parallel communication only among nearest neighbors.
(Collective communication is required only for diagnostics and
runtime monitoring and, hence, does not significantly influence
the parallel performance.) A comparison of a single MPI task (SN
mode) and two MPI tasks (VN mode) shows an increase in
execution time of roughly 30% on both XT3 and XT4
architectures. However, a single MPI task (SN mode) and two
MPI tasks (SN mode) have the same execution time. Therefore,
the role of MPI communication overhead can be ruled out and the
30% increase in execution time can be attributed to memory
bandwidth contention between cores identified previously in the
micro-benchmarks section.

6.5 Fusion
The two- and three-dimensional all-orders spectral algorithms
(AORSA) code [35] is a full-wave model for radio frequency
heating of plasmas in fusion energy devices such as ITER, the
international fusion energy project. AORSA operates on a spatial
mesh, with the resulting set of linear equations solved for the
Fourier coefficients. A Fast Fourier Transform algorithm converts
the problem to a frequency space, resulting in a dense, complex-
valued linear system.

0

10

20

30

40

50

60

70

80

90

100

Ax=b Calc QL operator Total

G
ri

n
d

 T
im

e
 (

m
in

u
te

s
)

4k XT3

4k XT4

8k XT4

16k XT3/4

22.5k XT3/4

Figure 36. AORSA Parallel performance

As previously reported [3], AORSA was able to run at
unprecedented scales on the XT3, allowing researchers to conduct
experiments at resolutions previously unattainable. For example,
preliminary calculations using 4,096 processors allowed the first
simulations of mode conversion in ITER. The solution of the
linear system using ScaLAPACK realized 10.56TFLOPS. Ported
to the dual-core version of the XT3, this improved to
11.0TFLOPS, and with the upgrade to XT4, this increased yet
again, to 11.8TFLOPS.

Recently configured for use with HPL [36], locally modified for
use with complex coefficients [37] and linked with the Goto
BLAS [38], the linear solver now achieves 16.7TFLOPS on 4,096
cores (78.4% of peak). Strong scaling results, up to 22,500 cores,
are shown in Figure 36. Although HPL yields only 65% of peak
on 22,500 cores (75.6TFLOPS) for this problem, when operating
on a larger grid (500x500, which cannot be run on fewer than 16k
cores), performance improves to 87.5TFLOPS (74.8% of peak).

Even larger problems are being configured which should again
increase performance.

7. DISCUSSION AND SUMMARY
We presented an evaluation of the Cray XT4 using micro-
benchmarks to develop a controlled understanding of individual
system components, providing the context for analyzing and
comprehending the performance of several petascale ready
applications. Inter-comparing the micro-benchmark results from
DGEMM, FFT, RA, and Stream, we see an important trend:
additional cores provide a performance improvement for
algorithms that exhibit high degrees of temporal locality (nearly
doubling performance for this dual-core case), but they provide
little benefit for codes which exhibit poor temporal locality.
Spatial locality provides only limited benefit since a single core
can essentially saturate the off-socket memory bandwidth.
Overall, relative to the XT3, the multi-core XT4 will perform
better on those codes that exhibit a high degrees of temporal
locality. The application results validate the micro-benchmark
data collected on the XT3 and XT4 systems. For instance, the
XT4 system outperforms the XT3 system for the micro-turbulence
application, which exhibit high-degree of data locality. However,
as observed in the communication micro-benchmarks,
applications should rely on larger (potentially aggregated)
messages for their communication to avoid the potential pitfalls of
sensitivity to high MPI latencies when utilizing the second core,
and even this is no guarantee that MPI performance in VN mode
will not be degraded compared to SN mode. For codes that exhibit
low degrees of temporal locality, XT4 may be best deployed in
SN mode and may provide only a modest improvement over the
XT3. For system I/O, our testing clearly suggests that better
performance is achieved with: (a) I/O buffers larger than 1MB, (b)
striping when writing large files (100MB or larger), (c) enough
I/O nodes (at least as many as the number of OSTs) to saturate the
Lustre filesystem, and (d) limits the number of I/O nodes
(subsetting) rather than using all cores when running at scale. In
conclusion, the system balance offered by the Cray XT series
system results in higher scalability for message-passing scientific
applications across multiple domains, though the immature
software stack currently penalizes applications which are latency
sensitive. In the future, we plan to investigate the impact of multi-
core devices in the Cray MPP systems and subsequently parallel
programming models for petascale scientific applications.

8. ACKNOWLEDGEMENTS
This research used resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

9. REFERENCES
[1] W. J. Camp and J. L. Tomkins, “Thor’s hammer: The first

version of the Red Storm MPP architecture,” Proceedings of

the SC 2002 Conference on High Performance Networking

and Computing, Baltimore, MD, November 2002.

[2] Sandia Red Storm System,
http://www.sandia.gov/ASC/redstorm.html.

[3] S. R. Alam, R. F. Barrett, M. R. Fahey, J. A. Kuehn, O. E. B.
Messer, R. T. Mills, P. C. Roth, J. S. Vetter, P. H. Worley,

“An Evaluation of the ORNL Cray XT3,” International

Journal of High Performance Computing Applications,
2006.

[4] J. S. Vetter, S. R. Alam, et al., “Early Evaluation of the Cray
XT3,” Proc. IEEE International Parallel and Distributed

Processing Symposium (IPDPS), 2006.

[5] Cray XT3 Data Sheet,
http://cray.com/downloads/Cray_XT3_Datasheet.pdf.

[6] Cray XT4 Data Sheet,
http://cray.com/downloads/Cray_XT4_Datasheet.pdf.

[7] M. Snir, W. D. Gropp, et al., Eds., MPI – the complete

reference (2-volume set), 2nd ed., Cambridge, MA, MIT
Press, 1998.

[8] M. Fahey, “XT Parallel IO,” NCCS Users Meeting, Oak
Ridge National Laboratory, TN, 2007.

[9] P. Luszczek, J. Dongarra, D. Koester, R. Rabenseifner, B.
Lucas, J. Kepner, J. McCalpin, D. Bailey, D. Takahashi,
“Introduction to the HPC Challenge Benchmark Suite,”
March, 2005.

[10] J. Dongarra, P. Luszczek, “Introduction to the HPC
Challenge Benchmark Suite,” ICL Technical Report, ICL-

UT-05-01, (Also appears as CS Dept. Tech Report UT-CS-
05-544), 2005.

[11] P. Luszczek, D. Koester, “HPC Challenge v1.x Benchmark
Suite,” SC|05 Tutorial-S13, Seattle, WA, November 13,
2005.

[12] High Performance Computing Challenge Benchmark Suite
Website, http://icl.cs.utk.edu/hpcc/.

[13] Custom Fortran/MPI code to test I/, G. Wagenbreth, 2007.

[14] IOR Benchmark, ftp://ftp.llnl.gov/pub/siop/ior/.

[15] Custom Fortran/MPI code to test I/O, M. Fahey, 2007.

[16] W. D. Collins, P. J. Rasch, “Description of the NCAR
Community Atmosphere Model (CAM 3.0),” National
Center for Atmospheric Research, Boulder, CO 80307, 2004.

[17] W. D. Collins, P. J. Rasch, et al., “The Formulation and
Atmospheric Simulation of the Community Atmosphere
Model: CAM3,” Journal of Climate, to appear, 2006.

[18] Community Climate System Model,
http://www.ccsm.ucar.edu/.

[19] M. B. Blackmon, B. Boville, et al., “The Community Climate
System Model,” BAMS, 82(11):2357-76, 2001.

[20] P. H. Worley, “CAM Performance on the X1E and XT3,”
Proc. Proceedings of the 48th Cray User Group Conference,
May 8-11, 2006.

[21] L. Dagum, R. Menon, “OpenMP: An Industry-Standard API
for Shared-Memory Programming,” IEEE Computational

Science & Engineering, 5(1):46-55, 1998.

[22] J. T. Kiehl, J. J. Hack, et al., “The National Center for
Atmospheric Research Community Climate Model: CCM3,”
Journal of Climate, 11:1131-49, 1998.

[23] D. L. Williamson, J. G. Olson, “Climate simulations with a
semi-Lagrangian version of the NCAR Community Climate
Model,” MWR, 122:1594-610, 1994.

[24] S. J. Lin, “A vertically Lagrangian finite-volume dynamical
core for global models,” MWR, 132(10):2293-307, 2004.

[25] P. W. Jones, P. H. Worley, et al., “Practical performance
portability in the Parallel Ocean Program (POP),”
Concurrency and Computation: Experience and Practice (in
press), 2004.

[26] P. H. Worley, J. Levesque, “The Performance Evolution of
the Parallel Ocean Program on the Cray X1,” Proceedings of

the 46th Cray User Group Conference, Knoxville, TN, May
17-21, 2004.

[27] R. W. Numrich, J. K. Reid, “Co-Array Fortran for parallel
programming,” ACM Fortran Forum, 17(2):1–31, 1998.

[28] A. Chronopoulos, C. Gear, “s-step iterative methods for
symmetric linear systems,” J. Comput. Appl. Math, 25:153–
168, 1989.

[29] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E.
Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, K.
Schulten, “Scalable molecular dynamics with NAMD,”
Journal of Computational Chemistry, 26:1781-1802, 2005.

[30] S. Kumar, G. Almasi, C. Huang, L. V. Kale, “Achieving
Strong Scaling with NAMD on Blue Gene/L,” presented at
IEEE International Parallel & Distributed Processing

Symposium, Rhodes Island, Greece, 2006.

[31] J. H. Chen, E. R. Hawkes, R. Sankaran, et al., “Direct
numerical simulation of ignition front propagation in a
constant volume with temperature inhomogeneities I.
fundamental analysis and diagnostics,” Combustion and

Flame, 145:128-144, 2006.

[32] R. Sankaran, E. R. Hawkes, J. H. Chen, et al., “Structure of a
spatially developing turbulent lean methane-air Bunsen
flame,” Proceedings of the Combustion Institute, 31:1291-
1298, 2007.

[33] E. R. Hawkes, R. Sankaran, J. C. Sutherland, et al., “Scalar
mixing in direct numerical simulations of temporally
evolving nonpremixed plane jet flames with skeletal CO-H2
kinetics,” Proceedings of the Combustion Institute, 31:1633-
1640, 2007.

[34] C. A. Kennedy, M. H. Carpenter, R. M. Lewis, “Low-storage
explicit Runge-Kutta schemes for the compressible Navier-
Stokes equations,” Applied Numerical Mathematics,

35(3):177-264, 2000.

[35] E. F. Jaeger, L. A. Berry, et al., “All-orders spectral
calculation of radio frequency heating in two-dimensional
toroidal plasmas,” Phys. Plasmas, 8(1573), 2001.

[36] HPL - A Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory Computers,
http://www.netlib.org/benchmark/hpl.

[37] Private communication, Eduardo D’Azevedo, Oak Ridge
National Laboratory, 2007.

[38] K. Goto, R. A. van de Geijn, “Anatomy of High-Performance
Matrix Multiplication,” ACM Transactions on Mathematical

Software, accepted pending modifications.

